A New Technique for Combining Multiple Classifiers using The Dempster-Shafer Theory of Evidence
نویسندگان
چکیده
This paper presents a new classifier combination technique based on the DempsterShafer theory of evidence. The Dempster-Shafer theory of evidence is a powerful method for combining measures of evidence from different classifiers. However, since each of the available methods that estimates the evidence of classifiers has its own limitations, we propose here a new implementation which adapts to training data so that the overall mean square error is minimized. The proposed technique is shown to outperform most available classifier combination methods when tested on three different classification problems.
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملمحاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد
Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory can be used as a uncertainty measurement of the system in specific situation In th...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملA New Algorithm For Speaker Identification Using The Dempster-Shafer Theory Of Evidence
In this paper, speaker identification using the Dempster-Shafer theory of evidence is discussed. The objective is to use the complementary information present from different classifiers to fuse the classification results into a single decision. Here, we use a decreasing function of the distance (of the classifiers) as our belief function. In the case of speaker identification, we show that a co...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 17 شماره
صفحات -
تاریخ انتشار 2002